Extensions 1→N→G→Q→1 with N=C23.4Q8 and Q=C2

Direct product G=N×Q with N=C23.4Q8 and Q=C2
dρLabelID
C2×C23.4Q864C2xC2^3.4Q8128,1125

Semidirect products G=N:Q with N=C23.4Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.4Q81C2 = C24.16D4φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:1C2128,345
C23.4Q82C2 = C24.18D4φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:2C2128,350
C23.4Q83C2 = C23.318C24φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:3C2128,1150
C23.4Q84C2 = C244Q8φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:4C2128,1169
C23.4Q85C2 = C24.269C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:5C2128,1175
C23.4Q86C2 = C23.348C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:6C2128,1180
C23.4Q87C2 = C23.349C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:7C2128,1181
C23.4Q88C2 = C23.354C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:8C2128,1186
C23.4Q89C2 = C24.276C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:9C2128,1187
C23.4Q810C2 = C23.367C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:10C2128,1199
C23.4Q811C2 = C24.290C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:11C2128,1203
C23.4Q812C2 = C23.379C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:12C2128,1211
C23.4Q813C2 = C23.382C24φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:13C2128,1214
C23.4Q814C2 = C24.300C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:14C2128,1219
C23.4Q815C2 = C23.398C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:15C2128,1230
C23.4Q816C2 = C23.401C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:16C2128,1233
C23.4Q817C2 = C23.416C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:17C2128,1248
C23.4Q818C2 = C24.311C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:18C2128,1253
C23.4Q819C2 = C23.439C24φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:19C2128,1271
C23.4Q820C2 = C4219D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:20C2128,1272
C23.4Q821C2 = C42.167D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:21C2128,1274
C23.4Q822C2 = C24.326C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:22C2128,1285
C23.4Q823C2 = C24.583C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:23C2128,1296
C23.4Q824C2 = C42.178D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:24C2128,1312
C23.4Q825C2 = C4222D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:25C2128,1330
C23.4Q826C2 = C24.589C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:26C2128,1355
C23.4Q827C2 = C23.524C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:27C2128,1356
C23.4Q828C2 = C245Q8φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:28C2128,1358
C23.4Q829C2 = C42.189D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:29C2128,1364
C23.4Q830C2 = C42.190D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:30C2128,1365
C23.4Q831C2 = C23.535C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:31C2128,1367
C23.4Q832C2 = C4230D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:32C2128,1368
C23.4Q833C2 = C24.375C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:33C2128,1381
C23.4Q834C2 = C23.551C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:34C2128,1383
C23.4Q835C2 = C23.556C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:35C2128,1388
C23.4Q836C2 = C42.196D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:36C2128,1390
C23.4Q837C2 = C24.378C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:37C2128,1395
C23.4Q838C2 = C23.568C24φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:38C2128,1400
C23.4Q839C2 = C23.571C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:39C2128,1403
C23.4Q840C2 = C23.572C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:40C2128,1404
C23.4Q841C2 = C23.574C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:41C2128,1406
C23.4Q842C2 = C23.585C24φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:42C2128,1417
C23.4Q843C2 = C23.592C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:43C2128,1424
C23.4Q844C2 = C24.401C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:44C2128,1426
C23.4Q845C2 = C23.605C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:45C2128,1437
C23.4Q846C2 = C23.606C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:46C2128,1438
C23.4Q847C2 = C24.412C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:47C2128,1442
C23.4Q848C2 = C23.611C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:48C2128,1443
C23.4Q849C2 = C23.618C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:49C2128,1450
C23.4Q850C2 = C24.418C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:50C2128,1455
C23.4Q851C2 = C23.627C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:51C2128,1459
C23.4Q852C2 = C23.630C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:52C2128,1462
C23.4Q853C2 = C23.632C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:53C2128,1464
C23.4Q854C2 = C23.635C24φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:54C2128,1467
C23.4Q855C2 = C23.640C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:55C2128,1472
C23.4Q856C2 = C23.641C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:56C2128,1473
C23.4Q857C2 = C23.643C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:57C2128,1475
C23.4Q858C2 = C24.432C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:58C2128,1478
C23.4Q859C2 = C24.434C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:59C2128,1480
C23.4Q860C2 = C23.652C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:60C2128,1484
C23.4Q861C2 = C24.448C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:61C2128,1512
C23.4Q862C2 = C23.696C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:62C2128,1528
C23.4Q863C2 = C23.701C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:63C2128,1533
C23.4Q864C2 = C24.459C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:64C2128,1545
C23.4Q865C2 = C23.716C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:65C2128,1548
C23.4Q866C2 = C42.199D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:66C2128,1552
C23.4Q867C2 = C23.726C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:67C2128,1558
C23.4Q868C2 = C23.727C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:68C2128,1559
C23.4Q869C2 = C23.729C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:69C2128,1561
C23.4Q870C2 = C23.737C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8:70C2128,1569
C23.4Q871C2 = C24.15Q8φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8:71C2128,1574
C23.4Q872C2 = C23.295C24φ: trivial image64C2^3.4Q8:72C2128,1127
C23.4Q873C2 = C4216D4φ: trivial image64C2^3.4Q8:73C2128,1129

Non-split extensions G=N.Q with N=C23.4Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.4Q8.1C2 = C24.4D4φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8.1C2128,84
C23.4Q8.2C2 = C24.17D4φ: C2/C1C2 ⊆ Out C23.4Q832C2^3.4Q8.2C2128,346
C23.4Q8.3C2 = C23.323C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.3C2128,1155
C23.4Q8.4C2 = C24.268C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.4C2128,1173
C23.4Q8.5C2 = C23.417C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.5C2128,1249
C23.4Q8.6C2 = C23.419C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.6C2128,1251
C23.4Q8.7C2 = C23.422C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.7C2128,1254
C23.4Q8.8C2 = C23.456C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.8C2128,1288
C23.4Q8.9C2 = C24.339C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.9C2128,1307
C23.4Q8.10C2 = C24.346C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.10C2128,1321
C23.4Q8.11C2 = C23.496C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.11C2128,1328
C23.4Q8.12C2 = C42.184D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.12C2128,1336
C23.4Q8.13C2 = C24.355C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.13C2128,1339
C23.4Q8.14C2 = C42.185D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.14C2128,1343
C23.4Q8.15C2 = C42.187D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.15C2128,1360
C23.4Q8.16C2 = C23.554C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.16C2128,1386
C23.4Q8.17C2 = C42.198D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.17C2128,1396
C23.4Q8.18C2 = C23.567C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.18C2128,1399
C23.4Q8.19C2 = C24.385C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.19C2128,1409
C23.4Q8.20C2 = C23.620C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.20C2128,1452
C23.4Q8.21C2 = C23.621C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.21C2128,1453
C23.4Q8.22C2 = C24.426C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.22C2128,1470
C23.4Q8.23C2 = C24.428C23φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.23C2128,1474
C23.4Q8.24C2 = C23.654C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.24C2128,1486
C23.4Q8.25C2 = C23.668C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.25C2128,1500
C23.4Q8.26C2 = C23.671C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.26C2128,1503
C23.4Q8.27C2 = C23.673C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.27C2128,1505
C23.4Q8.28C2 = C23.677C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.28C2128,1509
C23.4Q8.29C2 = C23.698C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.29C2128,1530
C23.4Q8.30C2 = C23.707C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.30C2128,1539
C23.4Q8.31C2 = C42.200D4φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.31C2128,1553
C23.4Q8.32C2 = C23.734C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.32C2128,1566
C23.4Q8.33C2 = C23.736C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.33C2128,1568
C23.4Q8.34C2 = C23.738C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.34C2128,1570
C23.4Q8.35C2 = C23.741C24φ: C2/C1C2 ⊆ Out C23.4Q864C2^3.4Q8.35C2128,1573
C23.4Q8.36C2 = C42.162D4φ: trivial image64C2^3.4Q8.36C2128,1128

׿
×
𝔽